511 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
			
		
		
	
	
			511 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
| package services
 | ||
| 
 | ||
| import (
 | ||
| 	"context"
 | ||
| 	"fmt"
 | ||
| 	"math"
 | ||
| 	"time"
 | ||
| 
 | ||
| 	"go.uber.org/zap"
 | ||
| 
 | ||
| 	"tyapi-server/internal/domains/statistics/entities"
 | ||
| 	"tyapi-server/internal/domains/statistics/repositories"
 | ||
| )
 | ||
| 
 | ||
| // StatisticsCalculationService 统计计算服务接口
 | ||
| // 负责各种统计计算和分析
 | ||
| type StatisticsCalculationService interface {
 | ||
| 	// 基础统计计算
 | ||
| 	CalculateTotal(ctx context.Context, metricType, metricName string, startDate, endDate time.Time) (float64, error)
 | ||
| 	CalculateAverage(ctx context.Context, metricType, metricName string, startDate, endDate time.Time) (float64, error)
 | ||
| 	CalculateMax(ctx context.Context, metricType, metricName string, startDate, endDate time.Time) (float64, error)
 | ||
| 	CalculateMin(ctx context.Context, metricType, metricName string, startDate, endDate time.Time) (float64, error)
 | ||
| 	
 | ||
| 	// 高级统计计算
 | ||
| 	CalculateGrowthRate(ctx context.Context, metricType, metricName string, currentPeriod, previousPeriod time.Time) (float64, error)
 | ||
| 	CalculateTrend(ctx context.Context, metricType, metricName string, startDate, endDate time.Time) (string, error)
 | ||
| 	CalculateCorrelation(ctx context.Context, metricType1, metricName1, metricType2, metricName2 string, startDate, endDate time.Time) (float64, error)
 | ||
| 	
 | ||
| 	// 业务指标计算
 | ||
| 	CalculateSuccessRate(ctx context.Context, startDate, endDate time.Time) (float64, error)
 | ||
| 	CalculateConversionRate(ctx context.Context, startDate, endDate time.Time) (float64, error)
 | ||
| 	CalculateRetentionRate(ctx context.Context, startDate, endDate time.Time) (float64, error)
 | ||
| 	
 | ||
| 	// 时间序列分析
 | ||
| 	CalculateMovingAverage(ctx context.Context, metricType, metricName string, startDate, endDate time.Time, windowSize int) ([]float64, error)
 | ||
| 	CalculateSeasonality(ctx context.Context, metricType, metricName string, startDate, endDate time.Time) (map[string]float64, error)
 | ||
| }
 | ||
| 
 | ||
| // StatisticsCalculationServiceImpl 统计计算服务实现
 | ||
| type StatisticsCalculationServiceImpl struct {
 | ||
| 	metricRepo repositories.StatisticsRepository
 | ||
| 	logger     *zap.Logger
 | ||
| }
 | ||
| 
 | ||
| // NewStatisticsCalculationService 创建统计计算服务
 | ||
| func NewStatisticsCalculationService(
 | ||
| 	metricRepo repositories.StatisticsRepository,
 | ||
| 	logger *zap.Logger,
 | ||
| ) StatisticsCalculationService {
 | ||
| 	return &StatisticsCalculationServiceImpl{
 | ||
| 		metricRepo: metricRepo,
 | ||
| 		logger:     logger,
 | ||
| 	}
 | ||
| }
 | ||
| 
 | ||
| // CalculateTotal 计算总值
 | ||
| func (s *StatisticsCalculationServiceImpl) CalculateTotal(ctx context.Context, metricType, metricName string, startDate, endDate time.Time) (float64, error) {
 | ||
| 	if metricType == "" || metricName == "" {
 | ||
| 		return 0, fmt.Errorf("指标类型和名称不能为空")
 | ||
| 	}
 | ||
| 
 | ||
| 	metrics, err := s.metricRepo.FindByTypeNameAndDateRange(ctx, metricType, metricName, startDate, endDate)
 | ||
| 	if err != nil {
 | ||
| 		s.logger.Error("查询指标失败", 
 | ||
| 			zap.String("metric_type", metricType),
 | ||
| 			zap.String("metric_name", metricName),
 | ||
| 			zap.Error(err))
 | ||
| 		return 0, fmt.Errorf("查询指标失败: %w", err)
 | ||
| 	}
 | ||
| 
 | ||
| 	var total float64
 | ||
| 	for _, metric := range metrics {
 | ||
| 		total += metric.Value
 | ||
| 	}
 | ||
| 
 | ||
| 	s.logger.Info("计算总值完成",
 | ||
| 		zap.String("metric_type", metricType),
 | ||
| 		zap.String("metric_name", metricName),
 | ||
| 		zap.Float64("total", total))
 | ||
| 
 | ||
| 	return total, nil
 | ||
| }
 | ||
| 
 | ||
| // CalculateAverage 计算平均值
 | ||
| func (s *StatisticsCalculationServiceImpl) CalculateAverage(ctx context.Context, metricType, metricName string, startDate, endDate time.Time) (float64, error) {
 | ||
| 	if metricType == "" || metricName == "" {
 | ||
| 		return 0, fmt.Errorf("指标类型和名称不能为空")
 | ||
| 	}
 | ||
| 
 | ||
| 	metrics, err := s.metricRepo.FindByTypeNameAndDateRange(ctx, metricType, metricName, startDate, endDate)
 | ||
| 	if err != nil {
 | ||
| 		s.logger.Error("查询指标失败", 
 | ||
| 			zap.String("metric_type", metricType),
 | ||
| 			zap.String("metric_name", metricName),
 | ||
| 			zap.Error(err))
 | ||
| 		return 0, fmt.Errorf("查询指标失败: %w", err)
 | ||
| 	}
 | ||
| 
 | ||
| 	if len(metrics) == 0 {
 | ||
| 		return 0, nil
 | ||
| 	}
 | ||
| 
 | ||
| 	var total float64
 | ||
| 	for _, metric := range metrics {
 | ||
| 		total += metric.Value
 | ||
| 	}
 | ||
| 
 | ||
| 	average := total / float64(len(metrics))
 | ||
| 
 | ||
| 	s.logger.Info("计算平均值完成",
 | ||
| 		zap.String("metric_type", metricType),
 | ||
| 		zap.String("metric_name", metricName),
 | ||
| 		zap.Float64("average", average))
 | ||
| 
 | ||
| 	return average, nil
 | ||
| }
 | ||
| 
 | ||
| // CalculateMax 计算最大值
 | ||
| func (s *StatisticsCalculationServiceImpl) CalculateMax(ctx context.Context, metricType, metricName string, startDate, endDate time.Time) (float64, error) {
 | ||
| 	if metricType == "" || metricName == "" {
 | ||
| 		return 0, fmt.Errorf("指标类型和名称不能为空")
 | ||
| 	}
 | ||
| 
 | ||
| 	metrics, err := s.metricRepo.FindByTypeNameAndDateRange(ctx, metricType, metricName, startDate, endDate)
 | ||
| 	if err != nil {
 | ||
| 		s.logger.Error("查询指标失败", 
 | ||
| 			zap.String("metric_type", metricType),
 | ||
| 			zap.String("metric_name", metricName),
 | ||
| 			zap.Error(err))
 | ||
| 		return 0, fmt.Errorf("查询指标失败: %w", err)
 | ||
| 	}
 | ||
| 
 | ||
| 	if len(metrics) == 0 {
 | ||
| 		return 0, nil
 | ||
| 	}
 | ||
| 
 | ||
| 	max := metrics[0].Value
 | ||
| 	for _, metric := range metrics {
 | ||
| 		if metric.Value > max {
 | ||
| 			max = metric.Value
 | ||
| 		}
 | ||
| 	}
 | ||
| 
 | ||
| 	s.logger.Info("计算最大值完成",
 | ||
| 		zap.String("metric_type", metricType),
 | ||
| 		zap.String("metric_name", metricName),
 | ||
| 		zap.Float64("max", max))
 | ||
| 
 | ||
| 	return max, nil
 | ||
| }
 | ||
| 
 | ||
| // CalculateMin 计算最小值
 | ||
| func (s *StatisticsCalculationServiceImpl) CalculateMin(ctx context.Context, metricType, metricName string, startDate, endDate time.Time) (float64, error) {
 | ||
| 	if metricType == "" || metricName == "" {
 | ||
| 		return 0, fmt.Errorf("指标类型和名称不能为空")
 | ||
| 	}
 | ||
| 
 | ||
| 	metrics, err := s.metricRepo.FindByTypeNameAndDateRange(ctx, metricType, metricName, startDate, endDate)
 | ||
| 	if err != nil {
 | ||
| 		s.logger.Error("查询指标失败", 
 | ||
| 			zap.String("metric_type", metricType),
 | ||
| 			zap.String("metric_name", metricName),
 | ||
| 			zap.Error(err))
 | ||
| 		return 0, fmt.Errorf("查询指标失败: %w", err)
 | ||
| 	}
 | ||
| 
 | ||
| 	if len(metrics) == 0 {
 | ||
| 		return 0, nil
 | ||
| 	}
 | ||
| 
 | ||
| 	min := metrics[0].Value
 | ||
| 	for _, metric := range metrics {
 | ||
| 		if metric.Value < min {
 | ||
| 			min = metric.Value
 | ||
| 		}
 | ||
| 	}
 | ||
| 
 | ||
| 	s.logger.Info("计算最小值完成",
 | ||
| 		zap.String("metric_type", metricType),
 | ||
| 		zap.String("metric_name", metricName),
 | ||
| 		zap.Float64("min", min))
 | ||
| 
 | ||
| 	return min, nil
 | ||
| }
 | ||
| 
 | ||
| // CalculateGrowthRate 计算增长率
 | ||
| func (s *StatisticsCalculationServiceImpl) CalculateGrowthRate(ctx context.Context, metricType, metricName string, currentPeriod, previousPeriod time.Time) (float64, error) {
 | ||
| 	if metricType == "" || metricName == "" {
 | ||
| 		return 0, fmt.Errorf("指标类型和名称不能为空")
 | ||
| 	}
 | ||
| 
 | ||
| 	// 获取当前周期的总值
 | ||
| 	currentTotal, err := s.CalculateTotal(ctx, metricType, metricName, currentPeriod, currentPeriod.Add(24*time.Hour))
 | ||
| 	if err != nil {
 | ||
| 		return 0, fmt.Errorf("计算当前周期总值失败: %w", err)
 | ||
| 	}
 | ||
| 
 | ||
| 	// 获取上一周期的总值
 | ||
| 	previousTotal, err := s.CalculateTotal(ctx, metricType, metricName, previousPeriod, previousPeriod.Add(24*time.Hour))
 | ||
| 	if err != nil {
 | ||
| 		return 0, fmt.Errorf("计算上一周期总值失败: %w", err)
 | ||
| 	}
 | ||
| 
 | ||
| 	// 计算增长率
 | ||
| 	if previousTotal == 0 {
 | ||
| 		if currentTotal > 0 {
 | ||
| 			return 100, nil // 从0增长到正数,增长率为100%
 | ||
| 		}
 | ||
| 		return 0, nil // 都是0,增长率为0%
 | ||
| 	}
 | ||
| 
 | ||
| 	growthRate := ((currentTotal - previousTotal) / previousTotal) * 100
 | ||
| 
 | ||
| 	s.logger.Info("计算增长率完成",
 | ||
| 		zap.String("metric_type", metricType),
 | ||
| 		zap.String("metric_name", metricName),
 | ||
| 		zap.Float64("growth_rate", growthRate))
 | ||
| 
 | ||
| 	return growthRate, nil
 | ||
| }
 | ||
| 
 | ||
| // CalculateTrend 计算趋势
 | ||
| func (s *StatisticsCalculationServiceImpl) CalculateTrend(ctx context.Context, metricType, metricName string, startDate, endDate time.Time) (string, error) {
 | ||
| 	if metricType == "" || metricName == "" {
 | ||
| 		return "", fmt.Errorf("指标类型和名称不能为空")
 | ||
| 	}
 | ||
| 
 | ||
| 	metrics, err := s.metricRepo.FindByTypeNameAndDateRange(ctx, metricType, metricName, startDate, endDate)
 | ||
| 	if err != nil {
 | ||
| 		s.logger.Error("查询指标失败", 
 | ||
| 			zap.String("metric_type", metricType),
 | ||
| 			zap.String("metric_name", metricName),
 | ||
| 			zap.Error(err))
 | ||
| 		return "", fmt.Errorf("查询指标失败: %w", err)
 | ||
| 	}
 | ||
| 
 | ||
| 	if len(metrics) < 2 {
 | ||
| 		return "insufficient_data", nil // 数据不足
 | ||
| 	}
 | ||
| 
 | ||
| 	// 按时间排序
 | ||
| 	sortMetricsByDateCalc(metrics)
 | ||
| 
 | ||
| 	// 计算趋势
 | ||
| 	firstValue := metrics[0].Value
 | ||
| 	lastValue := metrics[len(metrics)-1].Value
 | ||
| 
 | ||
| 	var trend string
 | ||
| 	if lastValue > firstValue {
 | ||
| 		trend = "increasing" // 上升趋势
 | ||
| 	} else if lastValue < firstValue {
 | ||
| 		trend = "decreasing" // 下降趋势
 | ||
| 	} else {
 | ||
| 		trend = "stable" // 稳定趋势
 | ||
| 	}
 | ||
| 
 | ||
| 	s.logger.Info("计算趋势完成",
 | ||
| 		zap.String("metric_type", metricType),
 | ||
| 		zap.String("metric_name", metricName),
 | ||
| 		zap.String("trend", trend))
 | ||
| 
 | ||
| 	return trend, nil
 | ||
| }
 | ||
| 
 | ||
| // CalculateCorrelation 计算相关性
 | ||
| func (s *StatisticsCalculationServiceImpl) CalculateCorrelation(ctx context.Context, metricType1, metricName1, metricType2, metricName2 string, startDate, endDate time.Time) (float64, error) {
 | ||
| 	if metricType1 == "" || metricName1 == "" || metricType2 == "" || metricName2 == "" {
 | ||
| 		return 0, fmt.Errorf("指标类型和名称不能为空")
 | ||
| 	}
 | ||
| 
 | ||
| 	// 获取两个指标的数据
 | ||
| 	metrics1, err := s.metricRepo.FindByTypeNameAndDateRange(ctx, metricType1, metricName1, startDate, endDate)
 | ||
| 	if err != nil {
 | ||
| 		return 0, fmt.Errorf("查询指标1失败: %w", err)
 | ||
| 	}
 | ||
| 
 | ||
| 	metrics2, err := s.metricRepo.FindByTypeNameAndDateRange(ctx, metricType2, metricName2, startDate, endDate)
 | ||
| 	if err != nil {
 | ||
| 		return 0, fmt.Errorf("查询指标2失败: %w", err)
 | ||
| 	}
 | ||
| 
 | ||
| 	if len(metrics1) != len(metrics2) || len(metrics1) < 2 {
 | ||
| 		return 0, fmt.Errorf("数据点数量不足或不对称")
 | ||
| 	}
 | ||
| 
 | ||
| 	// 计算皮尔逊相关系数
 | ||
| 	correlation := s.calculatePearsonCorrelation(metrics1, metrics2)
 | ||
| 
 | ||
| 	s.logger.Info("计算相关性完成",
 | ||
| 		zap.String("metric1", metricType1+"."+metricName1),
 | ||
| 		zap.String("metric2", metricType2+"."+metricName2),
 | ||
| 		zap.Float64("correlation", correlation))
 | ||
| 
 | ||
| 	return correlation, nil
 | ||
| }
 | ||
| 
 | ||
| // CalculateSuccessRate 计算成功率
 | ||
| func (s *StatisticsCalculationServiceImpl) CalculateSuccessRate(ctx context.Context, startDate, endDate time.Time) (float64, error) {
 | ||
| 	// 获取成功调用次数
 | ||
| 	successTotal, err := s.CalculateTotal(ctx, "api_calls", "success_count", startDate, endDate)
 | ||
| 	if err != nil {
 | ||
| 		return 0, fmt.Errorf("计算成功调用次数失败: %w", err)
 | ||
| 	}
 | ||
| 
 | ||
| 	// 获取总调用次数
 | ||
| 	totalCalls, err := s.CalculateTotal(ctx, "api_calls", "total_count", startDate, endDate)
 | ||
| 	if err != nil {
 | ||
| 		return 0, fmt.Errorf("计算总调用次数失败: %w", err)
 | ||
| 	}
 | ||
| 
 | ||
| 	if totalCalls == 0 {
 | ||
| 		return 0, nil
 | ||
| 	}
 | ||
| 
 | ||
| 	successRate := (successTotal / totalCalls) * 100
 | ||
| 
 | ||
| 	s.logger.Info("计算成功率完成",
 | ||
| 		zap.Float64("success_rate", successRate))
 | ||
| 
 | ||
| 	return successRate, nil
 | ||
| }
 | ||
| 
 | ||
| // CalculateConversionRate 计算转化率
 | ||
| func (s *StatisticsCalculationServiceImpl) CalculateConversionRate(ctx context.Context, startDate, endDate time.Time) (float64, error) {
 | ||
| 	// 获取认证用户数
 | ||
| 	certifiedUsers, err := s.CalculateTotal(ctx, "users", "certified_count", startDate, endDate)
 | ||
| 	if err != nil {
 | ||
| 		return 0, fmt.Errorf("计算认证用户数失败: %w", err)
 | ||
| 	}
 | ||
| 
 | ||
| 	// 获取总用户数
 | ||
| 	totalUsers, err := s.CalculateTotal(ctx, "users", "total_count", startDate, endDate)
 | ||
| 	if err != nil {
 | ||
| 		return 0, fmt.Errorf("计算总用户数失败: %w", err)
 | ||
| 	}
 | ||
| 
 | ||
| 	if totalUsers == 0 {
 | ||
| 		return 0, nil
 | ||
| 	}
 | ||
| 
 | ||
| 	conversionRate := (certifiedUsers / totalUsers) * 100
 | ||
| 
 | ||
| 	s.logger.Info("计算转化率完成",
 | ||
| 		zap.Float64("conversion_rate", conversionRate))
 | ||
| 
 | ||
| 	return conversionRate, nil
 | ||
| }
 | ||
| 
 | ||
| // CalculateRetentionRate 计算留存率
 | ||
| func (s *StatisticsCalculationServiceImpl) CalculateRetentionRate(ctx context.Context, startDate, endDate time.Time) (float64, error) {
 | ||
| 	// 获取活跃用户数
 | ||
| 	activeUsers, err := s.CalculateTotal(ctx, "users", "active_count", startDate, endDate)
 | ||
| 	if err != nil {
 | ||
| 		return 0, fmt.Errorf("计算活跃用户数失败: %w", err)
 | ||
| 	}
 | ||
| 
 | ||
| 	// 获取总用户数
 | ||
| 	totalUsers, err := s.CalculateTotal(ctx, "users", "total_count", startDate, endDate)
 | ||
| 	if err != nil {
 | ||
| 		return 0, fmt.Errorf("计算总用户数失败: %w", err)
 | ||
| 	}
 | ||
| 
 | ||
| 	if totalUsers == 0 {
 | ||
| 		return 0, nil
 | ||
| 	}
 | ||
| 
 | ||
| 	retentionRate := (activeUsers / totalUsers) * 100
 | ||
| 
 | ||
| 	s.logger.Info("计算留存率完成",
 | ||
| 		zap.Float64("retention_rate", retentionRate))
 | ||
| 
 | ||
| 	return retentionRate, nil
 | ||
| }
 | ||
| 
 | ||
| // CalculateMovingAverage 计算移动平均
 | ||
| func (s *StatisticsCalculationServiceImpl) CalculateMovingAverage(ctx context.Context, metricType, metricName string, startDate, endDate time.Time, windowSize int) ([]float64, error) {
 | ||
| 	if metricType == "" || metricName == "" {
 | ||
| 		return nil, fmt.Errorf("指标类型和名称不能为空")
 | ||
| 	}
 | ||
| 	if windowSize <= 0 {
 | ||
| 		return nil, fmt.Errorf("窗口大小必须大于0")
 | ||
| 	}
 | ||
| 
 | ||
| 	metrics, err := s.metricRepo.FindByTypeNameAndDateRange(ctx, metricType, metricName, startDate, endDate)
 | ||
| 	if err != nil {
 | ||
| 		s.logger.Error("查询指标失败", 
 | ||
| 			zap.String("metric_type", metricType),
 | ||
| 			zap.String("metric_name", metricName),
 | ||
| 			zap.Error(err))
 | ||
| 		return nil, fmt.Errorf("查询指标失败: %w", err)
 | ||
| 	}
 | ||
| 
 | ||
| 	if len(metrics) < windowSize {
 | ||
| 		return nil, fmt.Errorf("数据点数量不足")
 | ||
| 	}
 | ||
| 
 | ||
| 	// 按时间排序
 | ||
| 	sortMetricsByDateCalc(metrics)
 | ||
| 
 | ||
| 	// 计算移动平均
 | ||
| 	var movingAverages []float64
 | ||
| 	for i := windowSize - 1; i < len(metrics); i++ {
 | ||
| 		var sum float64
 | ||
| 		for j := i - windowSize + 1; j <= i; j++ {
 | ||
| 			sum += metrics[j].Value
 | ||
| 		}
 | ||
| 		average := sum / float64(windowSize)
 | ||
| 		movingAverages = append(movingAverages, average)
 | ||
| 	}
 | ||
| 
 | ||
| 	s.logger.Info("计算移动平均完成",
 | ||
| 		zap.String("metric_type", metricType),
 | ||
| 		zap.String("metric_name", metricName),
 | ||
| 		zap.Int("window_size", windowSize),
 | ||
| 		zap.Int("result_count", len(movingAverages)))
 | ||
| 
 | ||
| 	return movingAverages, nil
 | ||
| }
 | ||
| 
 | ||
| // CalculateSeasonality 计算季节性
 | ||
| func (s *StatisticsCalculationServiceImpl) CalculateSeasonality(ctx context.Context, metricType, metricName string, startDate, endDate time.Time) (map[string]float64, error) {
 | ||
| 	if metricType == "" || metricName == "" {
 | ||
| 		return nil, fmt.Errorf("指标类型和名称不能为空")
 | ||
| 	}
 | ||
| 
 | ||
| 	metrics, err := s.metricRepo.FindByTypeNameAndDateRange(ctx, metricType, metricName, startDate, endDate)
 | ||
| 	if err != nil {
 | ||
| 		s.logger.Error("查询指标失败", 
 | ||
| 			zap.String("metric_type", metricType),
 | ||
| 			zap.String("metric_name", metricName),
 | ||
| 			zap.Error(err))
 | ||
| 		return nil, fmt.Errorf("查询指标失败: %w", err)
 | ||
| 	}
 | ||
| 
 | ||
| 	if len(metrics) < 7 {
 | ||
| 		return nil, fmt.Errorf("数据点数量不足,至少需要7个数据点")
 | ||
| 	}
 | ||
| 
 | ||
| 	// 按星期几分组
 | ||
| 	weeklyAverages := make(map[string][]float64)
 | ||
| 	for _, metric := range metrics {
 | ||
| 		weekday := metric.Date.Weekday().String()
 | ||
| 		weeklyAverages[weekday] = append(weeklyAverages[weekday], metric.Value)
 | ||
| 	}
 | ||
| 
 | ||
| 	// 计算每个星期几的平均值
 | ||
| 	seasonality := make(map[string]float64)
 | ||
| 	for weekday, values := range weeklyAverages {
 | ||
| 		var sum float64
 | ||
| 		for _, value := range values {
 | ||
| 			sum += value
 | ||
| 		}
 | ||
| 		seasonality[weekday] = sum / float64(len(values))
 | ||
| 	}
 | ||
| 
 | ||
| 	s.logger.Info("计算季节性完成",
 | ||
| 		zap.String("metric_type", metricType),
 | ||
| 		zap.String("metric_name", metricName),
 | ||
| 		zap.Int("weekday_count", len(seasonality)))
 | ||
| 
 | ||
| 	return seasonality, nil
 | ||
| }
 | ||
| 
 | ||
| // calculatePearsonCorrelation 计算皮尔逊相关系数
 | ||
| func (s *StatisticsCalculationServiceImpl) calculatePearsonCorrelation(metrics1, metrics2 []*entities.StatisticsMetric) float64 {
 | ||
| 	n := len(metrics1)
 | ||
| 	if n < 2 {
 | ||
| 		return 0
 | ||
| 	}
 | ||
| 
 | ||
| 	// 计算均值
 | ||
| 	var sum1, sum2 float64
 | ||
| 	for i := 0; i < n; i++ {
 | ||
| 		sum1 += metrics1[i].Value
 | ||
| 		sum2 += metrics2[i].Value
 | ||
| 	}
 | ||
| 	mean1 := sum1 / float64(n)
 | ||
| 	mean2 := sum2 / float64(n)
 | ||
| 
 | ||
| 	// 计算协方差和方差
 | ||
| 	var numerator, denominator1, denominator2 float64
 | ||
| 	for i := 0; i < n; i++ {
 | ||
| 		diff1 := metrics1[i].Value - mean1
 | ||
| 		diff2 := metrics2[i].Value - mean2
 | ||
| 		numerator += diff1 * diff2
 | ||
| 		denominator1 += diff1 * diff1
 | ||
| 		denominator2 += diff2 * diff2
 | ||
| 	}
 | ||
| 
 | ||
| 	// 计算相关系数
 | ||
| 	if denominator1 == 0 || denominator2 == 0 {
 | ||
| 		return 0
 | ||
| 	}
 | ||
| 
 | ||
| 	correlation := numerator / math.Sqrt(denominator1*denominator2)
 | ||
| 	return correlation
 | ||
| }
 | ||
| 
 | ||
| // sortMetricsByDateCalc 按日期排序指标
 | ||
| func sortMetricsByDateCalc(metrics []*entities.StatisticsMetric) {
 | ||
| 	// 简单的冒泡排序
 | ||
| 	n := len(metrics)
 | ||
| 	for i := 0; i < n-1; i++ {
 | ||
| 		for j := 0; j < n-i-1; j++ {
 | ||
| 			if metrics[j].Date.After(metrics[j+1].Date) {
 | ||
| 				metrics[j], metrics[j+1] = metrics[j+1], metrics[j]
 | ||
| 			}
 | ||
| 		}
 | ||
| 	}
 | ||
| }
 |