new
This commit is contained in:
@@ -0,0 +1,510 @@
|
||||
package services
|
||||
|
||||
import (
|
||||
"context"
|
||||
"fmt"
|
||||
"math"
|
||||
"time"
|
||||
|
||||
"go.uber.org/zap"
|
||||
|
||||
"tyapi-server/internal/domains/statistics/entities"
|
||||
"tyapi-server/internal/domains/statistics/repositories"
|
||||
)
|
||||
|
||||
// StatisticsCalculationService 统计计算服务接口
|
||||
// 负责各种统计计算和分析
|
||||
type StatisticsCalculationService interface {
|
||||
// 基础统计计算
|
||||
CalculateTotal(ctx context.Context, metricType, metricName string, startDate, endDate time.Time) (float64, error)
|
||||
CalculateAverage(ctx context.Context, metricType, metricName string, startDate, endDate time.Time) (float64, error)
|
||||
CalculateMax(ctx context.Context, metricType, metricName string, startDate, endDate time.Time) (float64, error)
|
||||
CalculateMin(ctx context.Context, metricType, metricName string, startDate, endDate time.Time) (float64, error)
|
||||
|
||||
// 高级统计计算
|
||||
CalculateGrowthRate(ctx context.Context, metricType, metricName string, currentPeriod, previousPeriod time.Time) (float64, error)
|
||||
CalculateTrend(ctx context.Context, metricType, metricName string, startDate, endDate time.Time) (string, error)
|
||||
CalculateCorrelation(ctx context.Context, metricType1, metricName1, metricType2, metricName2 string, startDate, endDate time.Time) (float64, error)
|
||||
|
||||
// 业务指标计算
|
||||
CalculateSuccessRate(ctx context.Context, startDate, endDate time.Time) (float64, error)
|
||||
CalculateConversionRate(ctx context.Context, startDate, endDate time.Time) (float64, error)
|
||||
CalculateRetentionRate(ctx context.Context, startDate, endDate time.Time) (float64, error)
|
||||
|
||||
// 时间序列分析
|
||||
CalculateMovingAverage(ctx context.Context, metricType, metricName string, startDate, endDate time.Time, windowSize int) ([]float64, error)
|
||||
CalculateSeasonality(ctx context.Context, metricType, metricName string, startDate, endDate time.Time) (map[string]float64, error)
|
||||
}
|
||||
|
||||
// StatisticsCalculationServiceImpl 统计计算服务实现
|
||||
type StatisticsCalculationServiceImpl struct {
|
||||
metricRepo repositories.StatisticsRepository
|
||||
logger *zap.Logger
|
||||
}
|
||||
|
||||
// NewStatisticsCalculationService 创建统计计算服务
|
||||
func NewStatisticsCalculationService(
|
||||
metricRepo repositories.StatisticsRepository,
|
||||
logger *zap.Logger,
|
||||
) StatisticsCalculationService {
|
||||
return &StatisticsCalculationServiceImpl{
|
||||
metricRepo: metricRepo,
|
||||
logger: logger,
|
||||
}
|
||||
}
|
||||
|
||||
// CalculateTotal 计算总值
|
||||
func (s *StatisticsCalculationServiceImpl) CalculateTotal(ctx context.Context, metricType, metricName string, startDate, endDate time.Time) (float64, error) {
|
||||
if metricType == "" || metricName == "" {
|
||||
return 0, fmt.Errorf("指标类型和名称不能为空")
|
||||
}
|
||||
|
||||
metrics, err := s.metricRepo.FindByTypeNameAndDateRange(ctx, metricType, metricName, startDate, endDate)
|
||||
if err != nil {
|
||||
s.logger.Error("查询指标失败",
|
||||
zap.String("metric_type", metricType),
|
||||
zap.String("metric_name", metricName),
|
||||
zap.Error(err))
|
||||
return 0, fmt.Errorf("查询指标失败: %w", err)
|
||||
}
|
||||
|
||||
var total float64
|
||||
for _, metric := range metrics {
|
||||
total += metric.Value
|
||||
}
|
||||
|
||||
s.logger.Info("计算总值完成",
|
||||
zap.String("metric_type", metricType),
|
||||
zap.String("metric_name", metricName),
|
||||
zap.Float64("total", total))
|
||||
|
||||
return total, nil
|
||||
}
|
||||
|
||||
// CalculateAverage 计算平均值
|
||||
func (s *StatisticsCalculationServiceImpl) CalculateAverage(ctx context.Context, metricType, metricName string, startDate, endDate time.Time) (float64, error) {
|
||||
if metricType == "" || metricName == "" {
|
||||
return 0, fmt.Errorf("指标类型和名称不能为空")
|
||||
}
|
||||
|
||||
metrics, err := s.metricRepo.FindByTypeNameAndDateRange(ctx, metricType, metricName, startDate, endDate)
|
||||
if err != nil {
|
||||
s.logger.Error("查询指标失败",
|
||||
zap.String("metric_type", metricType),
|
||||
zap.String("metric_name", metricName),
|
||||
zap.Error(err))
|
||||
return 0, fmt.Errorf("查询指标失败: %w", err)
|
||||
}
|
||||
|
||||
if len(metrics) == 0 {
|
||||
return 0, nil
|
||||
}
|
||||
|
||||
var total float64
|
||||
for _, metric := range metrics {
|
||||
total += metric.Value
|
||||
}
|
||||
|
||||
average := total / float64(len(metrics))
|
||||
|
||||
s.logger.Info("计算平均值完成",
|
||||
zap.String("metric_type", metricType),
|
||||
zap.String("metric_name", metricName),
|
||||
zap.Float64("average", average))
|
||||
|
||||
return average, nil
|
||||
}
|
||||
|
||||
// CalculateMax 计算最大值
|
||||
func (s *StatisticsCalculationServiceImpl) CalculateMax(ctx context.Context, metricType, metricName string, startDate, endDate time.Time) (float64, error) {
|
||||
if metricType == "" || metricName == "" {
|
||||
return 0, fmt.Errorf("指标类型和名称不能为空")
|
||||
}
|
||||
|
||||
metrics, err := s.metricRepo.FindByTypeNameAndDateRange(ctx, metricType, metricName, startDate, endDate)
|
||||
if err != nil {
|
||||
s.logger.Error("查询指标失败",
|
||||
zap.String("metric_type", metricType),
|
||||
zap.String("metric_name", metricName),
|
||||
zap.Error(err))
|
||||
return 0, fmt.Errorf("查询指标失败: %w", err)
|
||||
}
|
||||
|
||||
if len(metrics) == 0 {
|
||||
return 0, nil
|
||||
}
|
||||
|
||||
max := metrics[0].Value
|
||||
for _, metric := range metrics {
|
||||
if metric.Value > max {
|
||||
max = metric.Value
|
||||
}
|
||||
}
|
||||
|
||||
s.logger.Info("计算最大值完成",
|
||||
zap.String("metric_type", metricType),
|
||||
zap.String("metric_name", metricName),
|
||||
zap.Float64("max", max))
|
||||
|
||||
return max, nil
|
||||
}
|
||||
|
||||
// CalculateMin 计算最小值
|
||||
func (s *StatisticsCalculationServiceImpl) CalculateMin(ctx context.Context, metricType, metricName string, startDate, endDate time.Time) (float64, error) {
|
||||
if metricType == "" || metricName == "" {
|
||||
return 0, fmt.Errorf("指标类型和名称不能为空")
|
||||
}
|
||||
|
||||
metrics, err := s.metricRepo.FindByTypeNameAndDateRange(ctx, metricType, metricName, startDate, endDate)
|
||||
if err != nil {
|
||||
s.logger.Error("查询指标失败",
|
||||
zap.String("metric_type", metricType),
|
||||
zap.String("metric_name", metricName),
|
||||
zap.Error(err))
|
||||
return 0, fmt.Errorf("查询指标失败: %w", err)
|
||||
}
|
||||
|
||||
if len(metrics) == 0 {
|
||||
return 0, nil
|
||||
}
|
||||
|
||||
min := metrics[0].Value
|
||||
for _, metric := range metrics {
|
||||
if metric.Value < min {
|
||||
min = metric.Value
|
||||
}
|
||||
}
|
||||
|
||||
s.logger.Info("计算最小值完成",
|
||||
zap.String("metric_type", metricType),
|
||||
zap.String("metric_name", metricName),
|
||||
zap.Float64("min", min))
|
||||
|
||||
return min, nil
|
||||
}
|
||||
|
||||
// CalculateGrowthRate 计算增长率
|
||||
func (s *StatisticsCalculationServiceImpl) CalculateGrowthRate(ctx context.Context, metricType, metricName string, currentPeriod, previousPeriod time.Time) (float64, error) {
|
||||
if metricType == "" || metricName == "" {
|
||||
return 0, fmt.Errorf("指标类型和名称不能为空")
|
||||
}
|
||||
|
||||
// 获取当前周期的总值
|
||||
currentTotal, err := s.CalculateTotal(ctx, metricType, metricName, currentPeriod, currentPeriod.Add(24*time.Hour))
|
||||
if err != nil {
|
||||
return 0, fmt.Errorf("计算当前周期总值失败: %w", err)
|
||||
}
|
||||
|
||||
// 获取上一周期的总值
|
||||
previousTotal, err := s.CalculateTotal(ctx, metricType, metricName, previousPeriod, previousPeriod.Add(24*time.Hour))
|
||||
if err != nil {
|
||||
return 0, fmt.Errorf("计算上一周期总值失败: %w", err)
|
||||
}
|
||||
|
||||
// 计算增长率
|
||||
if previousTotal == 0 {
|
||||
if currentTotal > 0 {
|
||||
return 100, nil // 从0增长到正数,增长率为100%
|
||||
}
|
||||
return 0, nil // 都是0,增长率为0%
|
||||
}
|
||||
|
||||
growthRate := ((currentTotal - previousTotal) / previousTotal) * 100
|
||||
|
||||
s.logger.Info("计算增长率完成",
|
||||
zap.String("metric_type", metricType),
|
||||
zap.String("metric_name", metricName),
|
||||
zap.Float64("growth_rate", growthRate))
|
||||
|
||||
return growthRate, nil
|
||||
}
|
||||
|
||||
// CalculateTrend 计算趋势
|
||||
func (s *StatisticsCalculationServiceImpl) CalculateTrend(ctx context.Context, metricType, metricName string, startDate, endDate time.Time) (string, error) {
|
||||
if metricType == "" || metricName == "" {
|
||||
return "", fmt.Errorf("指标类型和名称不能为空")
|
||||
}
|
||||
|
||||
metrics, err := s.metricRepo.FindByTypeNameAndDateRange(ctx, metricType, metricName, startDate, endDate)
|
||||
if err != nil {
|
||||
s.logger.Error("查询指标失败",
|
||||
zap.String("metric_type", metricType),
|
||||
zap.String("metric_name", metricName),
|
||||
zap.Error(err))
|
||||
return "", fmt.Errorf("查询指标失败: %w", err)
|
||||
}
|
||||
|
||||
if len(metrics) < 2 {
|
||||
return "insufficient_data", nil // 数据不足
|
||||
}
|
||||
|
||||
// 按时间排序
|
||||
sortMetricsByDateCalc(metrics)
|
||||
|
||||
// 计算趋势
|
||||
firstValue := metrics[0].Value
|
||||
lastValue := metrics[len(metrics)-1].Value
|
||||
|
||||
var trend string
|
||||
if lastValue > firstValue {
|
||||
trend = "increasing" // 上升趋势
|
||||
} else if lastValue < firstValue {
|
||||
trend = "decreasing" // 下降趋势
|
||||
} else {
|
||||
trend = "stable" // 稳定趋势
|
||||
}
|
||||
|
||||
s.logger.Info("计算趋势完成",
|
||||
zap.String("metric_type", metricType),
|
||||
zap.String("metric_name", metricName),
|
||||
zap.String("trend", trend))
|
||||
|
||||
return trend, nil
|
||||
}
|
||||
|
||||
// CalculateCorrelation 计算相关性
|
||||
func (s *StatisticsCalculationServiceImpl) CalculateCorrelation(ctx context.Context, metricType1, metricName1, metricType2, metricName2 string, startDate, endDate time.Time) (float64, error) {
|
||||
if metricType1 == "" || metricName1 == "" || metricType2 == "" || metricName2 == "" {
|
||||
return 0, fmt.Errorf("指标类型和名称不能为空")
|
||||
}
|
||||
|
||||
// 获取两个指标的数据
|
||||
metrics1, err := s.metricRepo.FindByTypeNameAndDateRange(ctx, metricType1, metricName1, startDate, endDate)
|
||||
if err != nil {
|
||||
return 0, fmt.Errorf("查询指标1失败: %w", err)
|
||||
}
|
||||
|
||||
metrics2, err := s.metricRepo.FindByTypeNameAndDateRange(ctx, metricType2, metricName2, startDate, endDate)
|
||||
if err != nil {
|
||||
return 0, fmt.Errorf("查询指标2失败: %w", err)
|
||||
}
|
||||
|
||||
if len(metrics1) != len(metrics2) || len(metrics1) < 2 {
|
||||
return 0, fmt.Errorf("数据点数量不足或不对称")
|
||||
}
|
||||
|
||||
// 计算皮尔逊相关系数
|
||||
correlation := s.calculatePearsonCorrelation(metrics1, metrics2)
|
||||
|
||||
s.logger.Info("计算相关性完成",
|
||||
zap.String("metric1", metricType1+"."+metricName1),
|
||||
zap.String("metric2", metricType2+"."+metricName2),
|
||||
zap.Float64("correlation", correlation))
|
||||
|
||||
return correlation, nil
|
||||
}
|
||||
|
||||
// CalculateSuccessRate 计算成功率
|
||||
func (s *StatisticsCalculationServiceImpl) CalculateSuccessRate(ctx context.Context, startDate, endDate time.Time) (float64, error) {
|
||||
// 获取成功调用次数
|
||||
successTotal, err := s.CalculateTotal(ctx, "api_calls", "success_count", startDate, endDate)
|
||||
if err != nil {
|
||||
return 0, fmt.Errorf("计算成功调用次数失败: %w", err)
|
||||
}
|
||||
|
||||
// 获取总调用次数
|
||||
totalCalls, err := s.CalculateTotal(ctx, "api_calls", "total_count", startDate, endDate)
|
||||
if err != nil {
|
||||
return 0, fmt.Errorf("计算总调用次数失败: %w", err)
|
||||
}
|
||||
|
||||
if totalCalls == 0 {
|
||||
return 0, nil
|
||||
}
|
||||
|
||||
successRate := (successTotal / totalCalls) * 100
|
||||
|
||||
s.logger.Info("计算成功率完成",
|
||||
zap.Float64("success_rate", successRate))
|
||||
|
||||
return successRate, nil
|
||||
}
|
||||
|
||||
// CalculateConversionRate 计算转化率
|
||||
func (s *StatisticsCalculationServiceImpl) CalculateConversionRate(ctx context.Context, startDate, endDate time.Time) (float64, error) {
|
||||
// 获取认证用户数
|
||||
certifiedUsers, err := s.CalculateTotal(ctx, "users", "certified_count", startDate, endDate)
|
||||
if err != nil {
|
||||
return 0, fmt.Errorf("计算认证用户数失败: %w", err)
|
||||
}
|
||||
|
||||
// 获取总用户数
|
||||
totalUsers, err := s.CalculateTotal(ctx, "users", "total_count", startDate, endDate)
|
||||
if err != nil {
|
||||
return 0, fmt.Errorf("计算总用户数失败: %w", err)
|
||||
}
|
||||
|
||||
if totalUsers == 0 {
|
||||
return 0, nil
|
||||
}
|
||||
|
||||
conversionRate := (certifiedUsers / totalUsers) * 100
|
||||
|
||||
s.logger.Info("计算转化率完成",
|
||||
zap.Float64("conversion_rate", conversionRate))
|
||||
|
||||
return conversionRate, nil
|
||||
}
|
||||
|
||||
// CalculateRetentionRate 计算留存率
|
||||
func (s *StatisticsCalculationServiceImpl) CalculateRetentionRate(ctx context.Context, startDate, endDate time.Time) (float64, error) {
|
||||
// 获取活跃用户数
|
||||
activeUsers, err := s.CalculateTotal(ctx, "users", "active_count", startDate, endDate)
|
||||
if err != nil {
|
||||
return 0, fmt.Errorf("计算活跃用户数失败: %w", err)
|
||||
}
|
||||
|
||||
// 获取总用户数
|
||||
totalUsers, err := s.CalculateTotal(ctx, "users", "total_count", startDate, endDate)
|
||||
if err != nil {
|
||||
return 0, fmt.Errorf("计算总用户数失败: %w", err)
|
||||
}
|
||||
|
||||
if totalUsers == 0 {
|
||||
return 0, nil
|
||||
}
|
||||
|
||||
retentionRate := (activeUsers / totalUsers) * 100
|
||||
|
||||
s.logger.Info("计算留存率完成",
|
||||
zap.Float64("retention_rate", retentionRate))
|
||||
|
||||
return retentionRate, nil
|
||||
}
|
||||
|
||||
// CalculateMovingAverage 计算移动平均
|
||||
func (s *StatisticsCalculationServiceImpl) CalculateMovingAverage(ctx context.Context, metricType, metricName string, startDate, endDate time.Time, windowSize int) ([]float64, error) {
|
||||
if metricType == "" || metricName == "" {
|
||||
return nil, fmt.Errorf("指标类型和名称不能为空")
|
||||
}
|
||||
if windowSize <= 0 {
|
||||
return nil, fmt.Errorf("窗口大小必须大于0")
|
||||
}
|
||||
|
||||
metrics, err := s.metricRepo.FindByTypeNameAndDateRange(ctx, metricType, metricName, startDate, endDate)
|
||||
if err != nil {
|
||||
s.logger.Error("查询指标失败",
|
||||
zap.String("metric_type", metricType),
|
||||
zap.String("metric_name", metricName),
|
||||
zap.Error(err))
|
||||
return nil, fmt.Errorf("查询指标失败: %w", err)
|
||||
}
|
||||
|
||||
if len(metrics) < windowSize {
|
||||
return nil, fmt.Errorf("数据点数量不足")
|
||||
}
|
||||
|
||||
// 按时间排序
|
||||
sortMetricsByDateCalc(metrics)
|
||||
|
||||
// 计算移动平均
|
||||
var movingAverages []float64
|
||||
for i := windowSize - 1; i < len(metrics); i++ {
|
||||
var sum float64
|
||||
for j := i - windowSize + 1; j <= i; j++ {
|
||||
sum += metrics[j].Value
|
||||
}
|
||||
average := sum / float64(windowSize)
|
||||
movingAverages = append(movingAverages, average)
|
||||
}
|
||||
|
||||
s.logger.Info("计算移动平均完成",
|
||||
zap.String("metric_type", metricType),
|
||||
zap.String("metric_name", metricName),
|
||||
zap.Int("window_size", windowSize),
|
||||
zap.Int("result_count", len(movingAverages)))
|
||||
|
||||
return movingAverages, nil
|
||||
}
|
||||
|
||||
// CalculateSeasonality 计算季节性
|
||||
func (s *StatisticsCalculationServiceImpl) CalculateSeasonality(ctx context.Context, metricType, metricName string, startDate, endDate time.Time) (map[string]float64, error) {
|
||||
if metricType == "" || metricName == "" {
|
||||
return nil, fmt.Errorf("指标类型和名称不能为空")
|
||||
}
|
||||
|
||||
metrics, err := s.metricRepo.FindByTypeNameAndDateRange(ctx, metricType, metricName, startDate, endDate)
|
||||
if err != nil {
|
||||
s.logger.Error("查询指标失败",
|
||||
zap.String("metric_type", metricType),
|
||||
zap.String("metric_name", metricName),
|
||||
zap.Error(err))
|
||||
return nil, fmt.Errorf("查询指标失败: %w", err)
|
||||
}
|
||||
|
||||
if len(metrics) < 7 {
|
||||
return nil, fmt.Errorf("数据点数量不足,至少需要7个数据点")
|
||||
}
|
||||
|
||||
// 按星期几分组
|
||||
weeklyAverages := make(map[string][]float64)
|
||||
for _, metric := range metrics {
|
||||
weekday := metric.Date.Weekday().String()
|
||||
weeklyAverages[weekday] = append(weeklyAverages[weekday], metric.Value)
|
||||
}
|
||||
|
||||
// 计算每个星期几的平均值
|
||||
seasonality := make(map[string]float64)
|
||||
for weekday, values := range weeklyAverages {
|
||||
var sum float64
|
||||
for _, value := range values {
|
||||
sum += value
|
||||
}
|
||||
seasonality[weekday] = sum / float64(len(values))
|
||||
}
|
||||
|
||||
s.logger.Info("计算季节性完成",
|
||||
zap.String("metric_type", metricType),
|
||||
zap.String("metric_name", metricName),
|
||||
zap.Int("weekday_count", len(seasonality)))
|
||||
|
||||
return seasonality, nil
|
||||
}
|
||||
|
||||
// calculatePearsonCorrelation 计算皮尔逊相关系数
|
||||
func (s *StatisticsCalculationServiceImpl) calculatePearsonCorrelation(metrics1, metrics2 []*entities.StatisticsMetric) float64 {
|
||||
n := len(metrics1)
|
||||
if n < 2 {
|
||||
return 0
|
||||
}
|
||||
|
||||
// 计算均值
|
||||
var sum1, sum2 float64
|
||||
for i := 0; i < n; i++ {
|
||||
sum1 += metrics1[i].Value
|
||||
sum2 += metrics2[i].Value
|
||||
}
|
||||
mean1 := sum1 / float64(n)
|
||||
mean2 := sum2 / float64(n)
|
||||
|
||||
// 计算协方差和方差
|
||||
var numerator, denominator1, denominator2 float64
|
||||
for i := 0; i < n; i++ {
|
||||
diff1 := metrics1[i].Value - mean1
|
||||
diff2 := metrics2[i].Value - mean2
|
||||
numerator += diff1 * diff2
|
||||
denominator1 += diff1 * diff1
|
||||
denominator2 += diff2 * diff2
|
||||
}
|
||||
|
||||
// 计算相关系数
|
||||
if denominator1 == 0 || denominator2 == 0 {
|
||||
return 0
|
||||
}
|
||||
|
||||
correlation := numerator / math.Sqrt(denominator1*denominator2)
|
||||
return correlation
|
||||
}
|
||||
|
||||
// sortMetricsByDateCalc 按日期排序指标
|
||||
func sortMetricsByDateCalc(metrics []*entities.StatisticsMetric) {
|
||||
// 简单的冒泡排序
|
||||
n := len(metrics)
|
||||
for i := 0; i < n-1; i++ {
|
||||
for j := 0; j < n-i-1; j++ {
|
||||
if metrics[j].Date.After(metrics[j+1].Date) {
|
||||
metrics[j], metrics[j+1] = metrics[j+1], metrics[j]
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
Reference in New Issue
Block a user